One-electron properties and electrostatic interaction energies from the expectation value expression and wave function of singles and doubles coupled cluster theory.
نویسندگان
چکیده
One-electron density matrices resulting from the explicitly connected commutator expansion of the expectation value were implemented at the singles and doubles coupled cluster (CCSD) level. In the proposed approach the one-electron density matrix is obtained at a little extra cost in comparison to the calculation of the CCSD correlation energy. Therefore, in terms of the computational time the new method is significantly less demanding than the conventional linear-response CCSD theory which requires additionally an expensive calculation of the left-hand solution of the CCSD equations. The quality of the new density matrices was investigated by computing a set of one-electron properties for a series of molecules of varying sizes and comparing the results with data obtained using the full configuration interaction method or higher level coupled cluster theory. It has been found that the results obtained using the new approach are of the same quality as those predicted by the linear-response CCSD method. The novel one-electron density matrices have also been applied to study the energy of the electrostatic interaction for a number of van der Waals complexes, including the benzene and azulene dimers.
منابع مشابه
Second-order perturbation corrections to singles and doubles coupled-cluster methods: General theory and application to the valence optimized doubles model
We present a general perturbative method for correcting a singles and doubles coupled-cluster energy. The coupled-cluster wave function is used to define a similarity-transformed Hamiltonian, which is partitioned into a zeroth-order part that the reference problem solves exactly plus a first-order perturbation. Standard perturbation theory through second-order provides the leading correction. A...
متن کاملElectrostatic energy in the effective fragment potential method: Theory and application to benzene dimer
Evaluation of the electrostatic energy within the effective fragment potential (EFP) method is presented. The performance of two variants of the distributed multipole analysis (DMA) together with two different models for estimating the charge penetration energies was studied using six homonuclear dimers. The importance of damping the higher order multipole terms, i.e. charge dipole, was also in...
متن کاملThe orbital-specific virtual local triples correction: OSV-L(T).
A local method based on orbital specific virtuals (OSVs) for calculating the perturbative triples correction in local coupled cluster calculations is presented. In contrast to the previous approach based on projected atomic orbitals (PAOs), described by Schütz [J. Chem. Phys. 113, 9986 (2000)], the new scheme works without any ad hoc truncations of the virtual space to domains. A single thresho...
متن کاملAccurate calculation and modeling of the adiabatic connection in density functional theory.
Using a recently implemented technique for the calculation of the adiabatic connection (AC) of density functional theory (DFT) based on Lieb maximization with respect to the external potential, the AC is studied for atoms and molecules containing up to ten electrons: the helium isoelectronic series, the hydrogen molecule, the beryllium isoelectronic series, the neon atom, and the water molecule...
متن کاملEnergies and analytic gradients for a coupled-cluster doubles model using variational Brueckner orbitals: Application to symmetry breaking
We describe an alternative procedure for obtaining approximate Brueckner orbitals in ab initio electronic structure theory. Whereas approximate Brueckner orbitals have traditionally been obtained by mixing the orbitals until the coefficients of singly substituted determinants in the many-electron wave function become zero, we remove singly substituted determinants at the outset and obtain orbit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of chemical physics
دوره 125 18 شماره
صفحات -
تاریخ انتشار 2006